Selasa, 29 Maret 2011

makalah titrasi konduktometri

Praktikum kimia fisika II


Titrasi konduktometri
















DISUSUN OLEH :
KELOMPOK II SELASA SIANG
R. MIRANTI (03081003032)


SUPADI (03081003058)





           

JURUSAN TEKNIK KIMIA


FAKULTAS TEKNIK


UNIVERSITAS SRIWIJAYA


2010/2010






KATA PENGANTAR

            Segala Puji syukur kepada Allah SWT, atas rahmat dan hidayah-Nya, sehingga kami masih diberi kesehatan dan kesempatan untuk menyusun makalah tentang titrasi konduktometri ini. Makalah ini dibuat untuk memahami lagi apa itu titrasi konduktometri, sehingga kita dapat mengaplikasikanya dalam kehiudpan sehari –  hari. Makalah titrasi konduktometri ini disusun dari berbagai sumber, baik dari buku maupun dari artikel – artikel guna memperjelas lagi materi yang bersangkutan. Makalah ini berisi tentang uraian – uraian yang berhubungan dengan titrasi konduktometri baik kelemahan dan kekuranganya serta aplikasinya dalam kehidupan sehari – hari. Semoga makalah ini bermanfaat bagi yang membacanya.
            Kami juga mengucapkan terima kaisih kepada asisten yang telah membimbing kami, serta teman – teman yang ikut menyumbang materi sehingga makalah ini dapat kami selesaikan.
            Saya merasa makalah yang kami buat ini masih banyak kesalahan dan kekurangan – keurangan karena kami maih dalam tahap pembelajaran, maka dari itu kami mengharapkan kritik dan saran bagi pembaca demi kesempurnaan dalam penyusunan makalah ini.










DAFATAR ISI






















PENDAHULUAN

A.Latar Belakang
Mempelajari titrasi amatlah penting bagi mahasiswa yang mengambil jurusan kimia dan bidang-bidang yang berhubungan dengannya. Titrasi sampai sekarang masih banyak dipakai di laboratorium industri disebabkan teknik ini cepat dan tidak membutuhkan banyak reagen. Titrasi merupakan salah satu teknik analisis kimia kuantitatif yang dipergunakan untuk menentukan konsentrasi suatu larutan tertentu, dimana penentuannya menggunakan suatu larutan standar yang sudah diketahui konsentrasinya secara tepat.  Pengukuran volume dalam titrasi memegang peranan yang amat penting sehingga ada kalanya sampai saat ini banyak orang yang menyebut titrasi dengan nama analisis volumetri.
Titik equivalent dapat ditentukan dengan berbagai macam cara, cara yang umum adalah dengan menggunakan indicator. Indikator akan berubah warna dengan adanya penambahan sedikit mungkin titran, dengan cara ini maka kita dapat langsung menghentikan proses titrasi. Tetapi selain itu juga dapat menggunakan alat yang disebut dengan konduktometer. Tidak semua zat bisa ditentukan dengan cara titrasi akan tetapi kita harus memperhatikan syarat-syarat titrasi untuk mengetahui zat apa saja yang dapat ditentukan dengan metode titrasi untuk berbagai jenis titrasi yang ada. Mengenal berbagai macam peralatan yang dipergunakan dalam titrasipun sangat berguna agar kita mahir melakukan teknik titrasi
            Titrasi konduktometri merupakan salah satu dari sekian banyak macam – macam titrasi. Didalam titrasi konduktometri ini tidak terlalu berbeda jauh dari titrasi – titrasi yang lainya, yang membedakan biasanya hanya terdapat bagaimana cara untuk mengetahui titik ekivalen dari larutan itu. Kalau kita menggunakan titrasi volumetri yang biasa kita praktikan sebelumnya titik ekivalen diketahui ketika terjadi perubahan warna, zat itu akan mengalami peruban warna bila zat itu dalam keadaan setimbang. Untuk mempermudah kita untuk melihat zat itu sudah mencapai ekivalen maka digunakan indikator. Tetpai banyak sekali para praktikan yang merasa kesulitan untuk menentukan dengan tepat titik ekivalen dengan menggunkan titrasi volumetri ini. Maka kami membuat makalah yang berjudul titrasi kondutometri ini, titrasi konduktometri ini lebih mudah jika dibandingkan dengan titrasi lainya, walaupun ada kelemahan tetapi juga ada kelebihanya. Titik ekivalen dapat kita ketahui dari daya hantar dari larutan yang kita ukur, jika daya hantar sudah konstan berarti titrasi sudah mencapai ekivalen. Titrasi ini juga tidak perlu menggunakan indikator, untuk lebih jelasnya akan dijelaskan dalam bab selanjutnya.
B. Tinjauan Pustaka
konduktometri merupakan prosedur titrasi, sedangkan konduktansi bukanlah prosedur titrasi. Metode konduktansi dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antara konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui. Berarti selama pengukuran yang berturut-turut jarak elektroda harus tetap. Hantaran sebanding dengan konsentrasi larutan pada temperatur tetap, tetapi pengenceran akan menyebabkan hantarannya tidak berfungsi secara linear lagi dengan konsentrasi (Khopkar, 2003).
Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion-ion yang ada, dan konsentrasi ion-ion tersebut. Ini sebagian besar disebabkan oleh berkurangnya efek-efek antar-ionik untuk elektrolit-elektrolit kuat dan oleh kenaikan derajat disosiasi untuk elektrolit-elektrolit lemah (Bassett, J. dkk., 1994).
Untuk mengukur konduktivitas suatu larutan, larutan ditaruh dalam sebuah sel, yang tetapan selnya telah ditetapkan dengan kalibrasi dengan suatu larutan yang konduktivitasnya diketahui dengan tepat, misal, suatu larutan kalium klorida standar. Sel ditaruh dalam satu lengan dari rangkaian jembatan Wheatstone dan resistansnya diukur (Bassett, J. dkk., 1994).
Bila konsentrasi dinyatakan dalam normalitas, maka harus dikalikan faktor 1000. nilai d/a =S  merupakan faktor geometri selnya dan nilainya konstan untuk suatu sel tertentu sehingga disebut tetapan sel (Khopkar, 2003).
metode konduktometri memiliki aplikasi yang jauh lebih terbatas ketimbang prosedur-prosedur visual, potensiometri ataupun amperometri (Bassett, J. dkk., 1994).
B. Rumusan Masalah
1.      Mengapa titrasi konduktometri lebih mudah dai titrai volumetri ?
2.      Mengapa titrasi kondukto metri tidak menggunakan indikator ?
3.      Mengapa volume tidak berpengaruh terhadap daya hantar larutan ?

C. Hipotesa
1.      Karena titrasi konduktometri lebih efisien dan lebeh efeketif dalam pengguanaan zat, selain itu juga, kita tidak perlu menggunakan indikator untuk mengethaui titik ekivalen dari titrasi.
2.      Karena titik ekivalen dapat diketahui dari daya hantar larutan yang terukur pada konduktometer, yaitu dengan konstannya nilai daya hantar.
3.      Karena didalam titrasi konduktometer ini yang berperan penting yaitu konsentrasi dari suatu larutan.
D. Tujuan
1.      Mempelajari kelebihan dan kelemahan dari titrasi konduktometri.
2.      Mempelajari faktor yang berperan penting dalam proses titrasi konduktometri.
3.      Mempelajari perbedaan antara titrasi konduktometri dengan titrasi lainya.













ISI DAN PEMBAHASAN
A.ISI
Konduktometri merupakan metode analisis kimia berdasarkan daya hantar listrik suatu larutan. Daya hantar listrik (G) suatu larutan bergantung pada jenis dan konsentrasi ion di dalam larutan. Daya hantar listrik berhubungan dengan pergerakan suatu ion di dalam larutan ion yang mudah bergerak mempunyai daya hantar listrik yang besar. Daya hantar listrik (G) merupakan kebalikan dari tahanan (R), sehingga daya hantar listrik mempunyai satuan ohm-1 . Bila arus listrik dialirkan dalam suatu larutan mempunyai dua elektroda, maka daya hantar listrik (G) berbanding lurus dengan luas permukaanelektroda (A) dan berbanding terbalik dengan jarak kedua elektroda
G = l/R = k (A / l)
dimana k adalah daya hantar jenis dalam satuan ohm -1 cm -1. Daya Hantar Ekivalen (Equivalen Conductance) . Kemampuan suatu zat terlarut untuk menghantarkan arus listrik disebut daya hantar ekivalen (^) yang didefinisikan sebagai daya hantar satu gram ekivalen zat terlarut di antara dua elektroda dengan jarak kedua electroda 1cm. Yang dimaksud dengan berat ekuivalen adalah berat molekul dibagi jumlah muatan positif atau negatif. Contoh berat ekivalen BaCl2 adalah BM BaCl2 dibagi dua. Volume larutan (cm3) yang mengandung satu gram ekivalen zat terlarut diberikan oleh,
V = 100 / C
dengan C adalah konsentrasi (ekivalen per cm-3), bilangan 1000 menunjukkan 1 liter = 1000 cm3. Volume dapat juga dinyatakan sebagai hasil kali luas (A) dan jarak kedua elektroda (1).
V= l A
Dengan l sama dengan 1 cm
V = A = 100 / C
Substitusi persamaan ini ke dalam persamaan G diperoleh,
G = 1/R = 1000k/C
Daya hantar ekivalen (^) akan sama dengan daya hantar listrik (G) bila 1 gram ekivalen larutan terdapat di antara dua elektroda dengan jarak 1 cm.^ = 1000k/C Daya hantar ekivalen pada larutan encer diberi simbol yang harganya tertentu untuk setiap ion. Pengukuran Daya Hantar Listrik. Pengukuran daya hantar memerlukan sumber listrik, sel untuk menyimpan larutan dan jembatan (rangkaian elektronik) untuk mengukur tahanan larutan.
1.    Sumber listrik
Hantaran arus DC (misal arus yang berasal dari batrei) melalui larutan merupakan proses faradai, yaitu oksidasi dan reduksi terjadi pada kedua elektroda. Sedangkan arus AC tidak memerlukan reaksi elektro kimia pada elektroda- elektrodanya, dalam hal ini aliran arus listrik bukan akibat proses faradai. Perubahan karena proses faradai dapat merubah sifat listrik sel, maka pengukuran konduktometri didasarkan pada arus nonparaday atau arus AC.
2.    Tahanan Jembatan
Jembatan Wheatstone merupakan jenis alat yang digunakan untuk pengukuran daya hantar.
3.    Sel
Salah satu bagian konduktometer adalah sel yang terdiri dari sepasang elektroda yang terbuat dari bahan yang sama. Biasanya elektroda berupa logam yang dilapisi logam platina untuk menambah efektifitas permukaan elektroda. Titrasi Konduktometri Metode konduktometri dapat digunakan untuk menentukan titik ekivalen suatu titrasi, berupa beberapa contoh titrasi konduktometri dibahas berikut, Titrasi asam kuat- basa kuat Sebagai contoh lrutan HCl dititrasi ole NaOH. Kedua larutan ini adalah penghantar listrik yang baik. Kurva titrasinya ditunjukkan pada gambar di bawah ini. daya hantar H+ turun sampai titik ekivalen tercapai. Dalam hal ini jumlah H+ makin berkurang di dalam larutan, sedangkan daya hantar OH- berrtambah setelah titik ekivalen (Te) tercapai karena jumlah OH- di dalam larutan bertambah. Jumlah ion Cl- di dalam larutan tidak berubah, karena itu daya hantar konstan dengan penambahan NaOH. Daya hantar ion Na+ bertambah secara perlahan-lahan sesuai dengan jumlah ion Na+.

Hal-hal berikut harus selalu diingat-ingat ketika melakukan titrasi :
1.      Penyesuaian pH. Untuk banyak titrasi EDTA, pH larutan sangatt menentukan sekali; seringkali harus dicapai  batas-batas dari 1 satuan pH dan sering batas-batas dari 0,5 satuan pH harus dicapai, agar suatu titrasi yang sukses dapat dilakukan. Untuk mencapai batas-batas kontrol yang begitu sempit, perlu digunakan sebuah pH-meter sewaktu menyesuaikan nilai pH larutan, dan bahkan untuk kasus di mana batas  pH adalah sedemikian sehingga kertas uji pH boleh digunakan untuk mengontrol penyesuain pH, hanyalah kertas dari jenis dengan jangkau yang sempit boleh digunakan.
2.      Pemekatan ion logam yang akan dititrasi.Kebanyakan titrasi berhasil dengan baik dengan 0,25 milimol ion logam yang bersangkutan dalam volume 50-150 cm3 larutan. Jika konsentrasi ion logam itu terlalu tinggi; maka titik akhir mungkin akan sangat sulit untuk dibedakan, dan jika kita mengalami kesulitan dengan titik akhir, maka sebaiknya mulailah lagi dengan satu porsi larutan uji yang lebih sedikit, dan encerkan ini sampai 100-150 cm3 sebelum menambahkan medium pembufer dan indikator, lalu diulangi titrasi itu.
3.      Banyaknya indicator. Penambahan indicator yang terlalu banyak merupakan kesalahan yang harus kita hindarkan. Dalam banyak kasus, warna yang ditimbulakan oleh indicator sanagt sekali bertambah kuat selama jalannya titrasi, dan labih jauh, banayak indicator memperlihatkan dikroisme, yaitu terjadi suatu perubahan warna peralihan pada satu dua tetes sebelum tiik akhir yang sebenarnya.
4.      Pencapaian titik-akhir. Dalam banyak titrasi EDTA, perubahan warna disekitar titik akhir, mungkin lambat. Dalam banyak hal-hal demikian, sebaiknya titran ditambahkan dengan hati-hati sambil larutan terus menerus diaduk; dianjurkan untuk memakai pengaduk magnetic. Sering, titik akhir yang lebih tajam dapat dicapai jika larutan diapnaskan samapi sekitar kira-kira 40OC. Titrasi dengan CDTA selalu lebih lambat dalam daerah titik akhir divbanding dengan titrasi EDTA padanan.
5.      Deteksi perubahan warna. Dengan semua indicator ion logam yang digunakan pada titrasi kompleksometri, deteksi titik akhir dan titrasi bergantung pada pengenalan suatu perubahan warna yang tertentu; bagi banyak pengamat, ini dapat merupakan tugas yang sulit, dsan bagi yang menderita buta warna, bolehlah dikata mustahil. Kesulitan-kesulitan ini dapat diatasi dengan menggantikan mata dengan suatu fotosel yang jauh lebih peka, dan meniadakan unsurt manusiawi. Untuk melakukan operasi yang dituntut, perlu tersedia sebuah kolorimeter atau spektrofotometer dalam mana kompartemen kuvetnya adaalh cukup besar untuk memuat bejana titrasi (labu Erlenmeyer atau piala berbentuk tinggi) Spektrofotometer Unicam SP 500 merupakan contoh dari instrumen yang sesuai untuk tujuan ini, dan sejumlah fototitrator tersedia secara komersial.
6.      Metode lain untuk mendeeksi titik akhir. Disamping deteksi secara visualdan secara spektrofotometri dari titik akhir dalam titrasi EDTA denagn bantuan indicator ion logam, metode berikut ini juga tersedia untuk deteksi titik akhir.
a.      Titrasi potensiometer dengan memakai sebuah electrode merkurium
b.     Titrasi potensiometer dengan memakai sebuah electrode ion selektif yang berespons terhadap ion yang sedang dititrasi.
c.      Titrasi potensiometri dengan memekai sebuah system electrode platinum mengkilat kalomel jenuh, ini dapat dipakai bila reaksi melibatkan dua keadaan oksidasi berlainan (dari) suatu logam tertentu
d.      Dengan titarasi titrasi konduktometri
e.       Dengan titrasi amperometri
f.       Dengan titrasi entalpimetri

Aplikasa Titrasi Kondukto Metri
Dasar Analisis Tablet Aspirin dengan Metode Titrasi Konduktometri
Menurut hukum Ohm I = E/Reaksi; di mana: I = arus dalam ampere, E = tegangan dalam volt, Reaksi = tahanan dalam ohm. Hukum di atas berlaku bila difusi dan reaksi elektroda tidak terjadi. Konduktansi sendiri didefinisikan sebagai kebalikan dari tahanan sehingga I = EL. Satuan dari hantaran (konduktansi) adalah mho. Hantaran L suatu larutan berbanding lurus pada luas permukaan elektroda a, konsentrasi ion persatuan volume larutan Ci, pada hantaran ekivalen ionik S1, tetapi berbanding terbalik dengan jarak elektroda d, sehingga:
L = a/d  x S Ci S1
Tanda S menyatakan bahwa sumbangan berbagai ion terhadap konduktansi bersifat aditif. Karena a, dan d dalam satuan cm, maka konsentrasi C tentunya dalam ml. Bila konsentrasi dinyatakan dalam normalitas, maka harus dikalikan faktor 1000. nilai d/a = S merupakan faktor geometri selnya dan nilainya konstan untuk suatu sel tertentu sehingga disebut tetapan sel. Untuk mengukur konduktivitas suatu larutan, larutan ditaruh dalam sebuah sel, yang tetapan selnya telah ditetapkan dengan kalibrasi dengan suatu larutan yang konduktivitasnya diketahui dengan tepat, misal, suatu larutan kalium klorida standar. Sel ditaruh dalam satu lengan dari rangkaian jembatan Wheatstone dan resistansnya diukur. Pengaliran arus melalui larutan suatu elektrolit dapat menghasilkan perubahan-perubahan dalam komposisi larutan di dekat sekali dengan lektrode-elektrode, begitulah potensial-potensial dapat timbul pada elektrode-elektrode, dengan akibat terbawanya sesatan-sesatan serius dalam pengukuran-pengukuran konduktivitas, kecuali kalau efek-efek polarisasi demikian dapat dikurangi sampai proporsi yang terabaikan.
Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion-ion yang ada, dan konsentrasi ion-ion tersebut. Bila larutan suatu elektrolit diencerkan, konduktivitas akan turun karena lebih sedikit ion berada per cm3 larutan untuk membawa arus. Jika semua larutan itu ditaruh antara dua elektrode yang terpisah 1 cm satu sama lain dan cukup besar untuk mencakup seluruh larutan, konduktans akan naik selagi larutan diencerkan. Ini sebagian besar disebabkan oleh berkurangnya efek-efek antar-ionik untuk elektrolit-elektrolit kuat dan oleh kenaikan derajat disosiasi untuk elektrolit-elektrolit lemah.
Penambahan suatu elektrolit kepada suatu larutan elektrolit lain pada kondisi-kondisi yang tak menghasilkan perubahan volume yang berarti akan mempengaruhi konduktans (hantaran) larutan, tergantung apakah ada tidaknya terjadi reaksi-reaksi ionik. Jika tak terjadi reaksi ionik, seperti pada penambahan satu garam sederhana kepada garam sederhana lain (misal, kalium klorida kepada natrium nitrat), konduktans hanya akan naik semata-mata. Jika terjadi reaksi ionik, konduktans dapat naik atau turn; begitulah pada penambahan suatu basa kepada suatu asam kuat, hantaran turun disebabkan oleh penggantian ion hidrogen yang konduktivitasnya tinggi oleh kation lain yang konduktivitasnya lebih rendah. Ini adalah prinsip yang mendasari titrasi-titrasi konduktometri yaitu, substitusi ion-ion dengan suatu konduktivitas oleh ion-ion dengan konduktivitas yang lain.
Biasanya konduktometri merupakan prosedur titrasi, sedangkan konduktansi bukanlah prosedur titrasi. Metode konduktansi dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antara konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui. Berarti selama pengukuran yang berturut-turut jarak elektroda harus tetap. Hantaran sebanding dengan konsentrasi larutan pada temperatur tetap, tetapi pengenceran akan menyebabkan hantarannya tidak berfungsi secara linear lagi dengan konsentrasi. Hendaknya diperhatikan pentingnya pengendalian temperatur dalam pengukuran-pengukuran konduktans. Sementara penggunaan termostat tidaklah sangat penting dalam titrasi konduktometri, kekonstanan dalam temperatur dituntut, tetapi biasanya kita hanya perlu menaruh sel konduktivitas itu dalam bejana besar penuh air pada temperatur laboratorium. Penambahan relatif (dari) konduktivitas larutan selama reaksi dan pada penambahan reagensia dengan berlebih, sangat menentukan ketepatan titrasi; pada kondisi optimum kira-kira 0,5 persen. Elektrolit asing dalam jumlah besar, yang tak ambil bagian dalam reaksi, tak boleh ada, karena zat-zat ini mempunyai efek yang besar sekali pada ketepatan. Akibatnya, metode konduktometri memiliki aplikasi yang jauh lebih terbatas ketimbang prosedur-prosedur visual, potensiometri ataupun amperometri.
Asam salisilat adalah golongan khusus dari asam hidroksi. Penggunaan utama dari asam salisilat adalah dalam pembuatan aspirin. Reaksi dengan anhidrida asetat mengubah gugus hidroksil fenolik dari asam salisilat menjadi ester asetil, yaitu aspirin :
Reaksi Pengolahan Aspirin








B. PEMBAHASAN
            Didalam titrasi konduktometri kita akan mendapatkan beberapa kemudahan yang mungkin tidak kita dapatkan jika kita menggunkan dengan titrasi lainya, misal tidak menggunakan indikator, karena dalam titrasi konduktometri ini kita hanya mengukur daya hantar larutan. Jadi dalam titrasi konduktometri ini kita tidak perlu mencari titik eivalen dengan melihat adanya perubahan warna. Walaupun demikian masih banyak kelemahan – kelamahan dalam titrasi konduktometri ini. Karena kita tahu bahwa dalam titrasi konduktometri hanya terbatas untuk larutan yang tergolong kedalam larutan elektrolit saja. Sedangkan untuk larutan non elektrolit tidak dapat menggunakan titrasi onduktometri. Titrasi konduktometri ini sangat berhubungan dengan daya hantar listrik, jadi juga akan berhubungan dengan adanya ion – ion dalam larutan yang berperan untuk menghantarkan arus listrik dalam larutan. Arus listrik ini tidak akan bisa melewati larutan yang tidak terdapat ion – ion, sehingga larutan non elektrolit tidak bisa menghantarkan arus listrik.
            Dalam titrasi konduktometri ini juga sangat berhubungan dengan konsentrasi dan temperatur dari larutan yang akan ditentukan daya hantarnya. Sehingga ikita harus menjaga temperatur larutan agar berada dalam keadaan konstan, sehingga kita dapat memebedakan perbedaan dari daya hantar larutan hanya berdasarkan perbedaan konsentrasi saja. Jika temperatur berubah – ubah maka bisa saja konsentrasi yang besar seharusnya memilki daya hantar yang besar malah memiliki daya hantar yang kecil karena suhunya menurun. Sehingga ion – ion dalam larutan tidak dapat begeraka dengan bebas.








BAB III
PENUTUP

3.1 Kesimpulan
1.      Daya hantar listrik dalam titrasi konduktometri sangat berhubungan dengan konsentrasi dan gerakan bebas dari ion.
2.      Tiitik ekivalen dari titrasi konduktometri ditandai dengan konstanya nilai daya hantar yang tertera dalam konduktometri.
3.      Titrasi kondukto metri hanya dapat digunakan untuk larutan elektrolit.

3.2  Saran
1.      Dalam melakukan titrasi konduktometri kita harus memperhatikan konsentrasi dari larutan yang kita tentukan daya hantarnya.
2.      Dalam titrasi konduktometri ini kita harus menjaga agar suhu tetap konstan.
3.      Sebelum melakukan titrasi kita harus mengetahui terlebh dahulu apakah larutan itu merupakan larutan elektrolit atau bukan.
4.      Dalam melakukan pengukuran diusahakan agar elektroda tercelup secara sempurna.











DAFTAR PUSTAKA
Anonim, mei 2010. http://www.Beberapa Pertimbangan Praktis _ Chem-Is-Try.Org _ Situs Kimia Indonesia _.htm. Diakses pada 2 mei 2010.
Anonim, mei 2010. http://www.Dasar Analisis Tablet Aspirin dengan Metode Titrasi Konduktometri _ BLoG kiTa.htm. Diakses pada 2 mei 2010.
Anonim, mei 2010. http://www. Apa itu titrasi_Kimia analisa.htm. Diakses pada 2 mei 2010.

Minggu, 27 Maret 2011

Renungkan

terlalu banyak uang yang kita habiskan untuk membeli kebutuhan dunia
tapi seberapa banyak uang yang kita habiskan untuk kepentingan akhira

terlalu banyak umur kita yang kita haniskan untuk tertawa dan bekerja
tapi seberapa banyak umur kita yang telah kita habiskan untuk beribadah

saudara- saudraku yang seiman maupun yang tidak seiman, marilah kita mulai mengubah cara hidup kita, mari kita mulai merubah dari hal yang paling terkecil dalam hidup kita, sebelum kita mengucapkan semua itu sudah terlambat karena nyawa kita sudah berada dibatas tenggorokan, marilah kita memperbanyak bersyukur kepada Allah atas apa yang telah diberikan kepada kita, marilah kita selalu mendekatkan diri kepada Allah yang tidak pernah menjauh dari kita walaupun kita selalu menjauhinya, marilah kita selalu meminta kepada Allah yang mana Allah tetap memberi walaupun kita tidak pernah memintanya. Jadi marilah kita bersama - sama meingkatkan iman dan takea kita, agar kita bersama - sama mendapat rahmat-Nya nati diakhiru zaman, amin.

Jumat, 11 Februari 2011

Titrasi konduktometri


KATA PENGANTAR

            Segala Puji syukur kepada Allah SWT, atas rahmat dan hidayah-Nya, sehingga kami masih diberi kesehatan dan kesempatan untuk menyusun makalah tentang titrasi konduktometri ini. Makalah ini dibuat untuk memahami lagi apa itu titrasi konduktometri, sehingga kita dapat mengaplikasikanya dalam kehiudpan sehari –  hari. Makalah titrasi konduktometri ini disusun dari berbagai sumber, baik dari buku maupun dari artikel – artikel guna memperjelas lagi materi yang bersangkutan. Makalah ini berisi tentang uraian – uraian yang berhubungan dengan titrasi konduktometri baik kelemahan dan kekuranganya serta aplikasinya dalam kehidupan sehari – hari. Semoga makalah ini bermanfaat bagi yang membacanya.
            Kami juga mengucapkan terima kaisih kepada asisten yang telah membimbing kami, serta teman – teman yang ikut menyumbang materi sehingga makalah ini dapat kami selesaikan.
            Saya merasa makalah yang kami buat ini masih banyak kesalahan dan kekurangan – keurangan karena kami maih dalam tahap pembelajaran, maka dari itu kami mengharapkan kritik dan saran bagi pembaca demi kesempurnaan dalam penyusunan makalah ini.










PENDAHULUAN

A.Latar Belakang
Mempelajari titrasi amatlah penting bagi mahasiswa yang mengambil jurusan kimia dan bidang-bidang yang berhubungan dengannya. Titrasi sampai sekarang masih banyak dipakai di laboratorium industri disebabkan teknik ini cepat dan tidak membutuhkan banyak reagen. Titrasi merupakan salah satu teknik analisis kimia kuantitatif yang dipergunakan untuk menentukan konsentrasi suatu larutan tertentu, dimana penentuannya menggunakan suatu larutan standar yang sudah diketahui konsentrasinya secara tepat.  Pengukuran volume dalam titrasi memegang peranan yang amat penting sehingga ada kalanya sampai saat ini banyak orang yang menyebut titrasi dengan nama analisis volumetri.
Titik equivalent dapat ditentukan dengan berbagai macam cara, cara yang umum adalah dengan menggunakan indicator. Indikator akan berubah warna dengan adanya penambahan sedikit mungkin titran, dengan cara ini maka kita dapat langsung menghentikan proses titrasi. Tetapi selain itu juga dapat menggunakan alat yang disebut dengan konduktometer. Tidak semua zat bisa ditentukan dengan cara titrasi akan tetapi kita harus memperhatikan syarat-syarat titrasi untuk mengetahui zat apa saja yang dapat ditentukan dengan metode titrasi untuk berbagai jenis titrasi yang ada. Mengenal berbagai macam peralatan yang dipergunakan dalam titrasipun sangat berguna agar kita mahir melakukan teknik titrasi
            Titrasi konduktometri merupakan salah satu dari sekian banyak macam – macam titrasi. Didalam titrasi konduktometri ini tidak terlalu berbeda jauh dari titrasi – titrasi yang lainya, yang membedakan biasanya hanya terdapat bagaimana cara untuk mengetahui titik ekivalen dari larutan itu. Kalau kita menggunakan titrasi volumetri yang biasa kita praktikan sebelumnya titik ekivalen diketahui ketika terjadi perubahan warna, zat itu akan mengalami peruban warna bila zat itu dalam keadaan setimbang. Untuk mempermudah kita untuk melihat zat itu sudah mencapai ekivalen maka digunakan indikator. Tetpai banyak sekali para praktikan yang merasa kesulitan untuk menentukan dengan tepat titik ekivalen dengan menggunkan titrasi volumetri ini. Maka kami membuat makalah yang berjudul titrasi kondutometri ini, titrasi konduktometri ini lebih mudah jika dibandingkan dengan titrasi lainya, walaupun ada kelemahan tetapi juga ada kelebihanya. Titik ekivalen dapat kita ketahui dari daya hantar dari larutan yang kita ukur, jika daya hantar sudah konstan berarti titrasi sudah mencapai ekivalen. Titrasi ini juga tidak perlu menggunakan indikator, untuk lebih jelasnya akan dijelaskan dalam bab selanjutnya.
B. Tinjauan Pustaka
konduktometri merupakan prosedur titrasi, sedangkan konduktansi bukanlah prosedur titrasi. Metode konduktansi dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antara konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui. Berarti selama pengukuran yang berturut-turut jarak elektroda harus tetap. Hantaran sebanding dengan konsentrasi larutan pada temperatur tetap, tetapi pengenceran akan menyebabkan hantarannya tidak berfungsi secara linear lagi dengan konsentrasi (Khopkar, 2003).
Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion-ion yang ada, dan konsentrasi ion-ion tersebut. Ini sebagian besar disebabkan oleh berkurangnya efek-efek antar-ionik untuk elektrolit-elektrolit kuat dan oleh kenaikan derajat disosiasi untuk elektrolit-elektrolit lemah (Bassett, J. dkk., 1994).
Untuk mengukur konduktivitas suatu larutan, larutan ditaruh dalam sebuah sel, yang tetapan selnya telah ditetapkan dengan kalibrasi dengan suatu larutan yang konduktivitasnya diketahui dengan tepat, misal, suatu larutan kalium klorida standar. Sel ditaruh dalam satu lengan dari rangkaian jembatan Wheatstone dan resistansnya diukur (Bassett, J. dkk., 1994).
Bila konsentrasi dinyatakan dalam normalitas, maka harus dikalikan faktor 1000. nilai d/a =S  merupakan faktor geometri selnya dan nilainya konstan untuk suatu sel tertentu sehingga disebut tetapan sel (Khopkar, 2003).
metode konduktometri memiliki aplikasi yang jauh lebih terbatas ketimbang prosedur-prosedur visual, potensiometri ataupun amperometri (Bassett, J. dkk., 1994).
B. Rumusan Masalah
1.      Mengapa titrasi konduktometri lebih mudah dai titrai volumetri ?
2.      Mengapa titrasi kondukto metri tidak menggunakan indikator ?
3.      Mengapa volume tidak berpengaruh terhadap daya hantar larutan ?

C. Hipotesa
1.      Karena titrasi konduktometri lebih efisien dan lebeh efeketif dalam pengguanaan zat, selain itu juga, kita tidak perlu menggunakan indikator untuk mengethaui titik ekivalen dari titrasi.
2.      Karena titik ekivalen dapat diketahui dari daya hantar larutan yang terukur pada konduktometer, yaitu dengan konstannya nilai daya hantar.
3.      Karena didalam titrasi konduktometer ini yang berperan penting yaitu konsentrasi dari suatu larutan.
D. Tujuan
1.      Mempelajari kelebihan dan kelemahan dari titrasi konduktometri.
2.      Mempelajari faktor yang berperan penting dalam proses titrasi konduktometri.
3.      Mempelajari perbedaan antara titrasi konduktometri dengan titrasi lainya.













ISI DAN PEMBAHASAN
A.ISI
Konduktometri merupakan metode analisis kimia berdasarkan daya hantar listrik suatu larutan. Daya hantar listrik (G) suatu larutan bergantung pada jenis dan konsentrasi ion di dalam larutan. Daya hantar listrik berhubungan dengan pergerakan suatu ion di dalam larutan ion yang mudah bergerak mempunyai daya hantar listrik yang besar. Daya hantar listrik (G) merupakan kebalikan dari tahanan (R), sehingga daya hantar listrik mempunyai satuan ohm-1 . Bila arus listrik dialirkan dalam suatu larutan mempunyai dua elektroda, maka daya hantar listrik (G) berbanding lurus dengan luas permukaanelektroda (A) dan berbanding terbalik dengan jarak kedua elektroda
G = l/R = k (A / l)
dimana k adalah daya hantar jenis dalam satuan ohm -1 cm -1. Daya Hantar Ekivalen (Equivalen Conductance) . Kemampuan suatu zat terlarut untuk menghantarkan arus listrik disebut daya hantar ekivalen (^) yang didefinisikan sebagai daya hantar satu gram ekivalen zat terlarut di antara dua elektroda dengan jarak kedua electroda 1cm. Yang dimaksud dengan berat ekuivalen adalah berat molekul dibagi jumlah muatan positif atau negatif. Contoh berat ekivalen BaCl2 adalah BM BaCl2 dibagi dua. Volume larutan (cm3) yang mengandung satu gram ekivalen zat terlarut diberikan oleh,
V = 100 / C
dengan C adalah konsentrasi (ekivalen per cm-3), bilangan 1000 menunjukkan 1 liter = 1000 cm3. Volume dapat juga dinyatakan sebagai hasil kali luas (A) dan jarak kedua elektroda (1).
V= l A
Dengan l sama dengan 1 cm
V = A = 100 / C
Substitusi persamaan ini ke dalam persamaan G diperoleh,
G = 1/R = 1000k/C
Daya hantar ekivalen (^) akan sama dengan daya hantar listrik (G) bila 1 gram ekivalen larutan terdapat di antara dua elektroda dengan jarak 1 cm.^ = 1000k/C Daya hantar ekivalen pada larutan encer diberi simbol yang harganya tertentu untuk setiap ion. Pengukuran Daya Hantar Listrik. Pengukuran daya hantar memerlukan sumber listrik, sel untuk menyimpan larutan dan jembatan (rangkaian elektronik) untuk mengukur tahanan larutan.
1.    Sumber listrik
Hantaran arus DC (misal arus yang berasal dari batrei) melalui larutan merupakan proses faradai, yaitu oksidasi dan reduksi terjadi pada kedua elektroda. Sedangkan arus AC tidak memerlukan reaksi elektro kimia pada elektroda- elektrodanya, dalam hal ini aliran arus listrik bukan akibat proses faradai. Perubahan karena proses faradai dapat merubah sifat listrik sel, maka pengukuran konduktometri didasarkan pada arus nonparaday atau arus AC.
2.    Tahanan Jembatan
Jembatan Wheatstone merupakan jenis alat yang digunakan untuk pengukuran daya hantar.
3.    Sel
Salah satu bagian konduktometer adalah sel yang terdiri dari sepasang elektroda yang terbuat dari bahan yang sama. Biasanya elektroda berupa logam yang dilapisi logam platina untuk menambah efektifitas permukaan elektroda. Titrasi Konduktometri Metode konduktometri dapat digunakan untuk menentukan titik ekivalen suatu titrasi, berupa beberapa contoh titrasi konduktometri dibahas berikut, Titrasi asam kuat- basa kuat Sebagai contoh lrutan HCl dititrasi ole NaOH. Kedua larutan ini adalah penghantar listrik yang baik. Kurva titrasinya ditunjukkan pada gambar di bawah ini. daya hantar H+ turun sampai titik ekivalen tercapai. Dalam hal ini jumlah H+ makin berkurang di dalam larutan, sedangkan daya hantar OH- berrtambah setelah titik ekivalen (Te) tercapai karena jumlah OH- di dalam larutan bertambah. Jumlah ion Cl- di dalam larutan tidak berubah, karena itu daya hantar konstan dengan penambahan NaOH. Daya hantar ion Na+ bertambah secara perlahan-lahan sesuai dengan jumlah ion Na+.

Hal-hal berikut harus selalu diingat-ingat ketika melakukan titrasi :
1.      Penyesuaian pH. Untuk banyak titrasi EDTA, pH larutan sangatt menentukan sekali; seringkali harus dicapai  batas-batas dari 1 satuan pH dan sering batas-batas dari 0,5 satuan pH harus dicapai, agar suatu titrasi yang sukses dapat dilakukan. Untuk mencapai batas-batas kontrol yang begitu sempit, perlu digunakan sebuah pH-meter sewaktu menyesuaikan nilai pH larutan, dan bahkan untuk kasus di mana batas  pH adalah sedemikian sehingga kertas uji pH boleh digunakan untuk mengontrol penyesuain pH, hanyalah kertas dari jenis dengan jangkau yang sempit boleh digunakan.
2.      Pemekatan ion logam yang akan dititrasi.Kebanyakan titrasi berhasil dengan baik dengan 0,25 milimol ion logam yang bersangkutan dalam volume 50-150 cm3 larutan. Jika konsentrasi ion logam itu terlalu tinggi; maka titik akhir mungkin akan sangat sulit untuk dibedakan, dan jika kita mengalami kesulitan dengan titik akhir, maka sebaiknya mulailah lagi dengan satu porsi larutan uji yang lebih sedikit, dan encerkan ini sampai 100-150 cm3 sebelum menambahkan medium pembufer dan indikator, lalu diulangi titrasi itu.
3.      Banyaknya indicator. Penambahan indicator yang terlalu banyak merupakan kesalahan yang harus kita hindarkan. Dalam banyak kasus, warna yang ditimbulakan oleh indicator sanagt sekali bertambah kuat selama jalannya titrasi, dan labih jauh, banayak indicator memperlihatkan dikroisme, yaitu terjadi suatu perubahan warna peralihan pada satu dua tetes sebelum tiik akhir yang sebenarnya.
4.      Pencapaian titik-akhir. Dalam banyak titrasi EDTA, perubahan warna disekitar titik akhir, mungkin lambat. Dalam banyak hal-hal demikian, sebaiknya titran ditambahkan dengan hati-hati sambil larutan terus menerus diaduk; dianjurkan untuk memakai pengaduk magnetic. Sering, titik akhir yang lebih tajam dapat dicapai jika larutan diapnaskan samapi sekitar kira-kira 40OC. Titrasi dengan CDTA selalu lebih lambat dalam daerah titik akhir divbanding dengan titrasi EDTA padanan.
5.      Deteksi perubahan warna. Dengan semua indicator ion logam yang digunakan pada titrasi kompleksometri, deteksi titik akhir dan titrasi bergantung pada pengenalan suatu perubahan warna yang tertentu; bagi banyak pengamat, ini dapat merupakan tugas yang sulit, dsan bagi yang menderita buta warna, bolehlah dikata mustahil. Kesulitan-kesulitan ini dapat diatasi dengan menggantikan mata dengan suatu fotosel yang jauh lebih peka, dan meniadakan unsurt manusiawi. Untuk melakukan operasi yang dituntut, perlu tersedia sebuah kolorimeter atau spektrofotometer dalam mana kompartemen kuvetnya adaalh cukup besar untuk memuat bejana titrasi (labu Erlenmeyer atau piala berbentuk tinggi) Spektrofotometer Unicam SP 500 merupakan contoh dari instrumen yang sesuai untuk tujuan ini, dan sejumlah fototitrator tersedia secara komersial.
6.      Metode lain untuk mendeeksi titik akhir. Disamping deteksi secara visualdan secara spektrofotometri dari titik akhir dalam titrasi EDTA denagn bantuan indicator ion logam, metode berikut ini juga tersedia untuk deteksi titik akhir.
a.      Titrasi potensiometer dengan memakai sebuah electrode merkurium
b.     Titrasi potensiometer dengan memakai sebuah electrode ion selektif yang berespons terhadap ion yang sedang dititrasi.
c.      Titrasi potensiometri dengan memekai sebuah system electrode platinum mengkilat kalomel jenuh, ini dapat dipakai bila reaksi melibatkan dua keadaan oksidasi berlainan (dari) suatu logam tertentu
d.      Dengan titarasi titrasi konduktometri
e.       Dengan titrasi amperometri
f.       Dengan titrasi entalpimetri

Aplikasa Titrasi Kondukto Metri
Dasar Analisis Tablet Aspirin dengan Metode Titrasi Konduktometri
Menurut hukum Ohm I = E/Reaksi; di mana: I = arus dalam ampere, E = tegangan dalam volt, Reaksi = tahanan dalam ohm. Hukum di atas berlaku bila difusi dan reaksi elektroda tidak terjadi. Konduktansi sendiri didefinisikan sebagai kebalikan dari tahanan sehingga I = EL. Satuan dari hantaran (konduktansi) adalah mho. Hantaran L suatu larutan berbanding lurus pada luas permukaan elektroda a, konsentrasi ion persatuan volume larutan Ci, pada hantaran ekivalen ionik S1, tetapi berbanding terbalik dengan jarak elektroda d, sehingga:
L = a/d  x S Ci S1
Tanda S menyatakan bahwa sumbangan berbagai ion terhadap konduktansi bersifat aditif. Karena a, dan d dalam satuan cm, maka konsentrasi C tentunya dalam ml. Bila konsentrasi dinyatakan dalam normalitas, maka harus dikalikan faktor 1000. nilai d/a = S merupakan faktor geometri selnya dan nilainya konstan untuk suatu sel tertentu sehingga disebut tetapan sel. Untuk mengukur konduktivitas suatu larutan, larutan ditaruh dalam sebuah sel, yang tetapan selnya telah ditetapkan dengan kalibrasi dengan suatu larutan yang konduktivitasnya diketahui dengan tepat, misal, suatu larutan kalium klorida standar. Sel ditaruh dalam satu lengan dari rangkaian jembatan Wheatstone dan resistansnya diukur. Pengaliran arus melalui larutan suatu elektrolit dapat menghasilkan perubahan-perubahan dalam komposisi larutan di dekat sekali dengan lektrode-elektrode, begitulah potensial-potensial dapat timbul pada elektrode-elektrode, dengan akibat terbawanya sesatan-sesatan serius dalam pengukuran-pengukuran konduktivitas, kecuali kalau efek-efek polarisasi demikian dapat dikurangi sampai proporsi yang terabaikan.
Konduktivitas suatu larutan elektrolit, pada setiap temperatur hanya bergantung pada ion-ion yang ada, dan konsentrasi ion-ion tersebut. Bila larutan suatu elektrolit diencerkan, konduktivitas akan turun karena lebih sedikit ion berada per cm3 larutan untuk membawa arus. Jika semua larutan itu ditaruh antara dua elektrode yang terpisah 1 cm satu sama lain dan cukup besar untuk mencakup seluruh larutan, konduktans akan naik selagi larutan diencerkan. Ini sebagian besar disebabkan oleh berkurangnya efek-efek antar-ionik untuk elektrolit-elektrolit kuat dan oleh kenaikan derajat disosiasi untuk elektrolit-elektrolit lemah.
Penambahan suatu elektrolit kepada suatu larutan elektrolit lain pada kondisi-kondisi yang tak menghasilkan perubahan volume yang berarti akan mempengaruhi konduktans (hantaran) larutan, tergantung apakah ada tidaknya terjadi reaksi-reaksi ionik. Jika tak terjadi reaksi ionik, seperti pada penambahan satu garam sederhana kepada garam sederhana lain (misal, kalium klorida kepada natrium nitrat), konduktans hanya akan naik semata-mata. Jika terjadi reaksi ionik, konduktans dapat naik atau turn; begitulah pada penambahan suatu basa kepada suatu asam kuat, hantaran turun disebabkan oleh penggantian ion hidrogen yang konduktivitasnya tinggi oleh kation lain yang konduktivitasnya lebih rendah. Ini adalah prinsip yang mendasari titrasi-titrasi konduktometri yaitu, substitusi ion-ion dengan suatu konduktivitas oleh ion-ion dengan konduktivitas yang lain.
Biasanya konduktometri merupakan prosedur titrasi, sedangkan konduktansi bukanlah prosedur titrasi. Metode konduktansi dapat digunakan untuk mengikuti reaksi titrasi jika perbedaan antara konduktansi cukup besar sebelum dan sesudah penambahan reagen. Tetapan sel harus diketahui. Berarti selama pengukuran yang berturut-turut jarak elektroda harus tetap. Hantaran sebanding dengan konsentrasi larutan pada temperatur tetap, tetapi pengenceran akan menyebabkan hantarannya tidak berfungsi secara linear lagi dengan konsentrasi. Hendaknya diperhatikan pentingnya pengendalian temperatur dalam pengukuran-pengukuran konduktans. Sementara penggunaan termostat tidaklah sangat penting dalam titrasi konduktometri, kekonstanan dalam temperatur dituntut, tetapi biasanya kita hanya perlu menaruh sel konduktivitas itu dalam bejana besar penuh air pada temperatur laboratorium. Penambahan relatif (dari) konduktivitas larutan selama reaksi dan pada penambahan reagensia dengan berlebih, sangat menentukan ketepatan titrasi; pada kondisi optimum kira-kira 0,5 persen. Elektrolit asing dalam jumlah besar, yang tak ambil bagian dalam reaksi, tak boleh ada, karena zat-zat ini mempunyai efek yang besar sekali pada ketepatan. Akibatnya, metode konduktometri memiliki aplikasi yang jauh lebih terbatas ketimbang prosedur-prosedur visual, potensiometri ataupun amperometri.
Asam salisilat adalah golongan khusus dari asam hidroksi. Penggunaan utama dari asam salisilat adalah dalam pembuatan aspirin. Reaksi dengan anhidrida asetat mengubah gugus hidroksil fenolik dari asam salisilat menjadi ester asetil, yaitu aspirin :
Reaksi Pengolahan Aspirin








B. PEMBAHASAN
            Didalam titrasi konduktometri kita akan mendapatkan beberapa kemudahan yang mungkin tidak kita dapatkan jika kita menggunkan dengan titrasi lainya, misal tidak menggunakan indikator, karena dalam titrasi konduktometri ini kita hanya mengukur daya hantar larutan. Jadi dalam titrasi konduktometri ini kita tidak perlu mencari titik eivalen dengan melihat adanya perubahan warna. Walaupun demikian masih banyak kelemahan – kelamahan dalam titrasi konduktometri ini. Karena kita tahu bahwa dalam titrasi konduktometri hanya terbatas untuk larutan yang tergolong kedalam larutan elektrolit saja. Sedangkan untuk larutan non elektrolit tidak dapat menggunakan titrasi onduktometri. Titrasi konduktometri ini sangat berhubungan dengan daya hantar listrik, jadi juga akan berhubungan dengan adanya ion – ion dalam larutan yang berperan untuk menghantarkan arus listrik dalam larutan. Arus listrik ini tidak akan bisa melewati larutan yang tidak terdapat ion – ion, sehingga larutan non elektrolit tidak bisa menghantarkan arus listrik.
            Dalam titrasi konduktometri ini juga sangat berhubungan dengan konsentrasi dan temperatur dari larutan yang akan ditentukan daya hantarnya. Sehingga ikita harus menjaga temperatur larutan agar berada dalam keadaan konstan, sehingga kita dapat memebedakan perbedaan dari daya hantar larutan hanya berdasarkan perbedaan konsentrasi saja. Jika temperatur berubah – ubah maka bisa saja konsentrasi yang besar seharusnya memilki daya hantar yang besar malah memiliki daya hantar yang kecil karena suhunya menurun. Sehingga ion – ion dalam larutan tidak dapat begeraka dengan bebas.








BAB III
PENUTUP

3.1 Kesimpulan
1.      Daya hantar listrik dalam titrasi konduktometri sangat berhubungan dengan konsentrasi dan gerakan bebas dari ion.
2.      Tiitik ekivalen dari titrasi konduktometri ditandai dengan konstanya nilai daya hantar yang tertera dalam konduktometri.
3.      Titrasi kondukto metri hanya dapat digunakan untuk larutan elektrolit.

3.2  Saran
1.      Dalam melakukan titrasi konduktometri kita harus memperhatikan konsentrasi dari larutan yang kita tentukan daya hantarnya.
2.      Dalam titrasi konduktometri ini kita harus menjaga agar suhu tetap konstan.
3.      Sebelum melakukan titrasi kita harus mengetahui terlebh dahulu apakah larutan itu merupakan larutan elektrolit atau bukan.
4.      Dalam melakukan pengukuran diusahakan agar elektroda tercelup secara sempurna.











DAFTAR PUSTAKA
Anonim, mei 2010. http://www.Beberapa Pertimbangan Praktis _ Chem-Is-Try.Org _ Situs Kimia Indonesia _.htm. Diakses pada 2 mei 2010.
Anonim, mei 2010. http://www.Dasar Analisis Tablet Aspirin dengan Metode Titrasi Konduktometri _ BLoG kiTa.htm. Diakses pada 2 mei 2010.
Anonim, mei 2010. http://www. Apa itu titrasi_Kimia analisa.htm. Diakses pada 2 mei 2010.